Development of a Total Cancer Marker through Single Molecule Assessment of DNA Integrity

Johns Hopkins University, 2008 - $20,000

Despite a number of advances in cancer detection technologies, the development of clinically validated, blood-based cancer biomarkers remains an unmet challenge for many common cancers. Better markers would lead to earlier detection, saving lives and cutting down on hospital costs. A new method, the DNA Integrity Assay (DIA) has the potential to accurately discriminate cancerous cells from normal cells for a wide range of cancers, but its clinical acceptance has been limited due to the complexity of the test, sampling errors, and the high cost of the materials, instruments and highly trained personnel needed to run it.

This E-Team is developing a new DIA testing method called smDIA (single molecule assessment of DNA integrity), which has the potential to eliminate errors and reduce the costs associated with the traditional DIA approach. In this method, a patient’s DNA sample (blood, stool, etc.) is transported by a microfluidic device through a sheet of laser beams (Cylindrical Illumination Confocal Spectroscopy), enabling direct analysis of the patient's DNA integrity in a rapid, uniform manner.