BMEidea 2010 winners announced


Johns Hopkins University 'Rapid Hypothermia Induction Device' Team wins BMEidea 2010! 

The winners of the 2010 BMEidea Awards were announced on June 11 at the Medical Design Excellence Awards ceremony in New York.

First place, winning $10,000: 

Rapid Hypothermia Induction Device (RHID) (Johns Hopkins University)
Improved advanced life support for cardiac arrest victims

Cardiac arrest is a leading cause of mortality and morbidity in the United States, with rates of full functional recovery as low as 4% to 7%. The only known treatment method to improving survival is the rapid induction and maintenance of therapeutic hypothermia (TH), to cool the brain. However, the average delay between the onset of cardiac arrest and the administering of hypothermia in hospitals is about six hours. There is currently a pressing clinical need for a device and method of administering TH in out-of-hospital settings so that this life-saving treatment can be initiated rapidly and safely.

The Johns Hopkins team has developed a device that emergency or ambulance personnel can use to rapidly administer a therapeutic hypothermia treatment to victims of cardiac arrest, to greatly improve their chances of survival upon reaching hospital.

RHID works on the principle of evaporative cooling. When water evaporates from the body, it carries with it a large amount of heat from the body, due to its high heat capacity. Nasal cavities have highly specialized vascular heat exchangers, called 'turbinates', which humidify and warm the air that passes to the lungs. During periods of low humidityand low temperature, blood flow increases to the turbinate’s, allowing for high levels of mucus production. RHID forcibly accelerates the evaporation of water from the nasal cavity by continuously flushing cold, dry air on its surface, cooling the brain until the patient can be administered  intensive care TH treatment at hospital.

Second place, winning $2,500:

Onebreath: Low-cost Ventilator (Stanford University)

A low-cost ventilator designed to treat acute respiratory distress patients in low-resource, pandemic and emergency environments

The recent H1N1 pandemic has ignited concern in the healthcare community over the state of preparedness of our nation's healthcare system in the event of a mass critical care emergency. If a 1918-like flu pandemic were to occur today, tens of millions of people could die from respiratory distress. Unfortunately, the US does not have enough ventilators to support patients with respiratory distress in even a mild flu pandemic, and it is currently cost-prohibitive to stockpile a sufficient quantity of these devices. When considered on a global scale, the disparity in pandemic resources between wealthy and impoverished nations is alarming. Many countries already face an extreme shortage of ventilators, even in the absence of a pandemic. For example, in the United States there are approximately 205,000 ventilators for a population of 300 million. In India, where the population exceeds 1.1 billion, there are only 35,000 intensive care ventilators available.The Stanford team has developed a portable, low cost ventilator ($300) designed for adult and pediatric respiratory distress patients. The device is designed to be easy to repair and intuitive enough for non-professionals to use.

Third place, winning $1,000:

Natural Orifice Volume Enlargement (NOVEL) Device (University of Cincinnati)

This team has developed a device to improve urogynecological procedures, by providing surgeons with better visibility and access to deep target tissues.

Pelvic organ prolapse is a physical condition in which the uterus and/or vaginal vault becomes detached from its normal position in the peritoneal cavity.Patients suffering from pelvic organ prolapse often experience pain, incontinence, recurrent infection, and even loss of sexual function.  Pelvic organ prolapse affects over 6 million women worldwide, and most of these patients end up living with the condition due to limitations in prolapse repair surgery.  Over 100,000 vaginal prolapse repair surgeries are conducted in the United States annually.  These repair surgeries are typically open procedures with limited success and high post-operative revision rate.


Honorable mentions:

  • Design: A Novel Device for Pacemaker Lead Anchorage, University of MI, Ann Arbor
  • Global Impact: MRAD - Malaria Retinopathy Automated Detector, Tulane University
  • Social Impact: Development of a Diagnostic Instrument for Early Pressure Ulcer Diagnosis, Carnegie Mellon University
  • Improved Eye Drop Applicator, Johns Hopkins University
  • CervoCheck: Preterm Labor Monitor, Johns Hopkins University
  • Cortical Concepts, Johns Hopkins University


Media coverage


About BMEidea
BMEidea is more than just a design competition, Student teams are judged on a complete commercialization strategy—product innovation, market need, regulatory pathway, sales strategy, economic issues. The teams' entries were evaluated by judges drawn from academia and industry. Winning entries must solve a clinical problem; meet technical, economic, legal, and regulatory requirements; feature novel and practical designs; and show potential for commercialization. Submissions are judged on technical feasibility, clinical utility, economic feasibility and market potential, novelty and patentability, potential for commercialization and benefit to quality of life and care.

Prizes include cash awards in the amount of $10,000 (first prize), $2,500 (second prize), and $1,000 (third prize), and product development and commercialization resources and training.

The 2011 competition will open in September 2010.

All entrants are eligible to receive a complimentary Mathematica for Students license, courtesy of Wolfram Research.


Previous winners


BMEidea Sponsors

The material contained within this webpage is based in part upon work supported by the National Science Foundation under Grant #0602484. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.